167 research outputs found

    Measuring visual cortical oxygenation in diabetes using functional near-infrared spectroscopy

    Get PDF
    Aims: Diabetes mellitus affects about 6% of the world’s population, and the chronic complications of the disease may result in macro- and micro-vascular changes. The purpose of the current study was to shed light on visual cortical oxygenation in diabetic individuals. We then aimed to compare the haemodynamic response (HDR) to visual stimulation with glycaemic control, given the likelihood of diabetic individuals suffering from such macro- and micro-vascular insult. Methodology: Thirty participants took part in this explorative study, fifteen of whom had diabetes and fifteen of whom were non-diabetic controls. The HDR, measured as concentrations of oxyhaemoglobin [HbO] and deoxyhaemoglobin [HbR], to visual stimulation was recorded over the primary visual cortex (V1) using a dual-channel oximeter. The stimulus comprised a pattern-reversal checkerboard presented in a block design. Participants’ mean glycated haemoglobin (HbA1c) level (±SD) was 7.2±0.6% in the diabetic group and 5.5±0.4% in the non-diabetic group. Raw haemodynamic data were normalised to baseline, and the last 15 s of data from each ‘stimulus on’ and ‘stimulus off’ condition were averaged over seven duty cycles for each participant. Results: There were statistically significant differences in ∆[HbO] and ∆[HbR] to visual stimulation between diabetic and non-diabetic groups (p<0.05). In the diabetic group, individuals with type 1 diabetes displayed an increased [HbO] (p<0.01) and decreased [HbR] (p<0.05) compared to their type 2 counterparts. There was also a linear relationship between both ∆[HbO] and ∆[HbR] as a function of HbA1c level (p<0.0005). Conclusions: Our findings suggest that fNIRS can be used as a quantitative measure of cortical oxygenation in diabetes. Diabetic individuals have a larger HDR to visual stimulation compared to non-diabetic individuals. This increase in ∆[HbO] and decrease in ∆[HbR] appears to be correlated with HbA1c level

    Effects of glaucoma and snoring on cerebral oxygenation in the visual cortex: a study using functional Near Infrared Spectroscopy (fNIRS)

    Get PDF
    Purpose: The purpose of this study was to investigate the effects of snoring and glaucoma on the visual Haemodynamic Response (HDR) using functional Near Infrared Spectroscopy (fNIRS). Methods: We recruited 8 glaucoma patients (aged 56-79), 6 habitual snorers (aged 26-61) and 10 healthy control participants (aged 21-78). Glaucoma patients were of varying subtypes and under care of ophthalmologists. Prior to testing visual acuity, blood pressure, heart rate and a medical history were taken. HDRs were recorded over the primary visual cortex (V1) using a reversing checkerboard paradigm. Results & Discussion: All participants showed the characteristic increase of Oxyhaemoglobin concentration ([HbO]) and decrease of Deoxyhaemoglobin concentration ([HbR]) during visual stimulation (p < 0.001, η2 = 0.78). Despite this, there were signifi cant group differences with a large effect size (η2 = 0.28). During visual stimulation normal participants had greater [HbO] compared to snorers and glaucoma patients (p < 0.01). Both glaucoma patients and snorers presented with comparable HDR for [HbO] and [HbR] in V1. Importantly, during visual stimulation, the increased [HbO] in glaucoma patients correlated well with their visual fi elds and self-reported activities of daily living (r = -0.98, r = -0.82, p < 0.05). Both glaucoma patients and snorers presented with an attenuated HDR in V1. Our results suggest a possible vascular link between these conditions

    Fluorine Directed Two-Dimensional Cruciform π−π Stacking in Diketopyrrolopyrroles

    Get PDF
    This is the Accepted Manuscript Version of the following article: Jesus Calvo-Castro, Graeme Morris, Alan R. Kennedy, and Callum J. McHugh, “Fluorine Directed Two-Dimensional Cruciform π–π Stacking in Diketopyrrolopyrroles”, Crystal Growth and Design, Vol. 16 (9): 5385–5393, July 2016. Copyright © 2016 American Chemical Society.Enhanced bulk dimensionality in organic materials employed in optoelectronic devices is desirable and can overcome fabrication issues related to structural defects and grain boundaries. Herein, we report a novel fluorinated diketopyrrolopyrrole single crystal structure, which displays a unique, mutually orthogonal, 2-dimensional cruciform π−π stacking arrangement. The crystal structure is characterized by an unusually large number of nearest neighbor dimer pairs which contribute to a greater thermal integrity than structurally analogous equivalents. Binding energies and charge transfer integrals were computed for all of the crystal extracted dimer pairs by means of the M06-2X density functional at the 6- 311G(d) level. Although weak, a number of intermolecular interactions involving organic fluorine (C−F---H, πF---π, and C−F---πF) were identified to influence the supramolecular assembly of these dimer pairs. Charge transfer integrals for the two π−π stacking crystal dimers were determined using the energy splitting in dimer method. Ambipolar charge transport favoring electron transfer approaching that of rubrene is predicted in both of these π−π stacks, with a greater magnitude of coupling observed from those dimers perpetuating along the crystallographic a-axis. Charge transport behavior in the single crystal is greatly influenced by selective fluorination of the N-benzyl substituents and is consistent with the crystal extracted π−π stacking dimer geometries and their overall influence on wave function overlap. The reported structure is an interesting electron transport material that could be exploited, particularly in thin film based optoelectronic devices, where high bulk dimensionality is required.Peer reviewedFinal Accepted Versio

    Distinct lower visual field preference for object shape

    Get PDF
    YesHumans manipulate objects chiefly within their lower visual field, a consequence of upright posture and the anatomical position of hands and arms.This study tested the hypothesis of enhanced sensitivity to a range of stimuli within the lower visual field. Following current models of hierarchical processing within the ventral steam, discrimination sensitivity was measured for orientation, curvature, shape (radial frequency patterns), and faces at various para-central locations (horizontal, vertical, and main diagonal meridians) and eccentricities (5° and 10°). Peripheral sensitivity was isotropic for orientation and curvature. By contrast, observers were significantly better at discriminating shapes throughout the lower visual field compared to elsewhere. For faces, however, peak sensitivity was found in the left visual field, corresponding to the right hemispheric localization of human face processing. Presenting head outlines without any internal features (e.g., eyes, mouth) recovered the lower visual field advantage found for simple shapes. A lower visual field preference for the shape of an object, which is absent for more localized information (orientation and curvature) but also for more complex objects (faces), is inconsistent with a strictly feed-forward model and poses a challenge for multistage models of object perception. The distinct lower visual field preference for contour shapes is, however, consistent with an asymmetry at intermediate stages of visual processing, which may play a key role in representing object characteristics that are particularly relevant to visually guided actions

    Effects of fluorine substitution on the intermolecular interactions, energetics and packing behaviour of N-benzyl substituted diketopyrrolopyrroles

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth and Design, after peer review and technical editing by the publisher. To access the final edited and published work see doi: 10.1021/acs.cgd.6b00157.Rationalizing the effects of molecular substitution in π-conjugated organic materials arising from well-defined intermolecular interactions, which can influence the formation of predefined packing motifs and control the emergence of π–π stacking represents a current challenge in supramolecular design. Significant effort is potentially required to manage the impact on solid state packing behavior in materials that have been molecularly tuned to carry out specific photophysical and electrochemical functions. In this regard, fluorine substitution in π-conjugated systems has seen a recent surge of interest, primarily aimed toward the development of materials with enhanced optical and optoelectronic behavior. In light of this interest, in the following study, we report the synthesis and single crystal structures from a series of four novel and structurally related, symmetric, fluorinated N-benzyl substituted diketopyrrolopyrroles (DPPs). Two of the investigated series exhibit slipped cofacial π–π dimer pairs, which are consistent with those reported by us previously in halogenated DPPs. Significantly, this characteristic stacking motif of N-benzyl substituted DPPs can be carefully modified via the replacement of hydrogen atoms with trifluoromethyl and isosteric fluorine–hydrogen substituents. In the case of trifluoromethyl substitution, we identify a previously unobserved packing motif exhibiting a framework of well-defined channels propagating along the length of the crystallographic c-axis. In each of the reported systems, all of the nearest neighbor dimer pairs have been identified and their intermolecular interaction energies computed by means of the M06-2X density functional at the 6-311G(d) level. Through a detailed theoretical analysis involving the determination of cropped dimer energetics, organic fluorine is shown to play an active role in the stabilization of the crystal extracted dimer pairs through a number of additive and weak C–F---H, C–F---πF, and C–F---π intermolecular contacts. Contrary to recent reports, we demonstrate that substitution of hydrogen by fluorine can also lead to dramatic changes in solid state packing behavior as a consequence of these weak interactions. Given the importance of organic fluorine substitution in the construction of π-conjugated materials for optoelectronic materials, we feel that this work should be of interest to the wider community involved in supramolecular design of organic conjugated systems, and in particular to those investigating organic fluorine as well as diketopyrrolopyrrole containing architecturesPeer reviewedFinal Accepted Versio

    A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings

    Get PDF
    Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation

    Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140671/1/1.j052255.pd

    Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis

    Get PDF
    SummaryHomeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic CaV2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic CaV2.1 in a homeostatic retrograde signaling system
    • 

    corecore